

## Biology & Behavioral Ecology of Swarming in Honey Bees





#### What is swarming?

- What's happening: a natural event; a good event in natural circumstances
- Part of the reproductive process; propagation (preserving the species)
- Involves a large group of bees leaving an established colony
- May result in the establishment two colonies of bees [why]
- The propensity to swarm resides in genetics
  - Hence there can be race bias for swarming
    - Race = biotypes, subspecies, strains
  - Inclination (urge) to swarm varies among biotypes
    - Varying sensitivity to factors that trigger swarming



#### Why do honey bees swarm?

- Two main reasons a colony swarms
  - Space
    - Colony becomes too congested for the space within the hive
    - This scenario results in "reproductive fission"
      - One colony becomes two colonies
      - About 75% of worker bees leave [50% total?]
    - Most food stores remain in original hive
  - Undesirable conditions
    - Bad environment; diseases; pests, lack of food
    - Results in the loss of an established colony
    - All the bees leave
    - Little or no food stores left



#### When do honey bees swarm?

- When does space become an issue?
  - Usually in the late spring and early summer
  - Strong colonies can become space-limited earlier and throughout the summer
  - Feeding colonies can extend the time of swarming
- When do undesirable conditions become an issue?
  - When diseases and pests increase
  - Usually later in the summer or early fall
  - [Are current losses an example of swarming?]



#### How does swarming start? A Timeline - in a perfect world

- Series of events that initiate space-induced swarming
  - Symptoms start 30-40 days prior to swarming
  - Worker bees detect a problem (space, condition)
    - Worker bees are able to out-perform the queen
    - Too many bees for the queen pheromone
    - Too high of a young/old ratio of worker bees
    - > 90% of the brood comb is in use
    - Bees exceed 2.3 workers/ml space (1/5 teaspoon)
  - Worker bees signal its time to swarm (not the queen)
  - Some foraging bees begin to search for a new site
  - Some foraging bees protect an optimal new site



#### **How** does swarming start? A timeline (continued)?

- At 15-30 days before the swarm appears, worker bees start making queen cells
- Usually, at 15 days before swarming the new queen egg is laid
- At 14 days before swarming
  - Worker bees decrease feeding the queen
  - Increased vibrations of the queen
  - Fewer worker bees foraging
- At 10 days before swarming
  - Departing worker bees (young) begin to engorge
  - Piping sound made by queen
  - Piping sound made by worker bees





#### **How** does swarming start (continued)?

- At ≥7 days before swarming
  - Often a decrease in brood production
  - Waggle dancing by workers for nest site selection
  - Buzz-running by workers
- At 6 days before swarming
  - Queen cell is capped
    - Colony is now **committed** to swarming
- The colony swarms day zero
- Usually, at 1-3 days <u>after</u> swarming (in the perfect world)
  - The new queen emerges in the original hive





#### **How** does swarming start (continued)?

- Series of events that initiate undesirable condition-induced swarming
  - Less researched topic than space-induced swarming
    - Assumed a similar timeline
    - Assume similar series of events, except
      - Plenty of brood comb available
      - No crowding issues
      - Likely to be more older bees than young bees
      - Absence of building a queen cell
      - All bees engorge and participate in leaving
      - Unknown if piping occurs
      - Time-line of events is not well articulated



#### The Order of Events During Swarming

- Swarm of bees leave the hive en masse
- Form a cloud of bees just outside the parental hive
- After ~ 20 minutes they coalesce into a cluster
- Cluster forms at an interim site, usually nearby
  - From there they choose their future nest site
- "Piping" starts ~ 1 hour prior to swarm taking flight
- Followed by "buzz running & piping" to warm up
- Swarm takes flight again and goes to the new site



#### **Selecting the Future Nest Site**

- Several hundred scout bees are involved
- They search for potential dwelling sites
- Suitable locations are reported via waggle dances
- Other scouts decode the dance messages
- Other scout bees visit the sites
- Recruitment and selection ensues on the cluster
   More details on the next slide
- The swarm moves to the new site



#### **Nest site selection**

Seeley and Visscher research: Behav Ecol Sociobiol (2003) 54:511-520

<u>Democratic</u>
Majority agreement
Affected by an observation at the cluster

<u>Despotic</u>
Single individual
Affected by either the cluster or the nest site

Quorum

Small minority of the whole body

Affected by an observation at the nest site



## The Superorganism has collective intelligence – the group acts as a single decision maker





[Nurse & forage bees do not display nepotism in performing their functions, even though their biology would allow for it.]

| Table 1. Comparison of bees and their traits.         |               |                                   |                                    |                                               |               |                                                            |
|-------------------------------------------------------|---------------|-----------------------------------|------------------------------------|-----------------------------------------------|---------------|------------------------------------------------------------|
|                                                       | <br>Italian   | German                            | Carniolan                          | Buckfast                                      | Caucasian     | Russian                                                    |
| Color                                                 | Light         | Dark                              | Black                              | Medium                                        | Dark          | Gray                                                       |
| Disease resistance                                    |               |                                   |                                    |                                               |               |                                                            |
| Varroa                                                | -             | -                                 | -                                  | -                                             | -             | +                                                          |
| Tracheal                                              | -             | =                                 | -                                  | +                                             | 0             | +                                                          |
| AFB*                                                  | 0             | =                                 | +                                  | 0                                             | 0             | 0                                                          |
| EFB**                                                 | 0             | 0                                 | 0                                  | 0                                             | 0             | 0                                                          |
| Other                                                 | 0             | 0                                 | +                                  | +                                             | -             | 0                                                          |
| Gentleness                                            | Moderate      | Low                               | High                               | Low-Mod                                       | High          | Low-Mod                                                    |
| Spring buildup                                        | Good          | Low                               | Very good                          | Low                                           | Very low      | ОК                                                         |
| Over-wintering ability                                | Good          | Very good                         | Good                               | Good                                          | ОК            | Very good                                                  |
| Excess swarming                                       | OK            | ОК                                | High                               | Low                                           | Low           | ОК                                                         |
| Honey processing                                      | Very good     | OK                                | Good                               | Good                                          | Low           | OK                                                         |
| Propolis                                              | Low           | OK                                | Low                                | Low                                           | High          | OK                                                         |
| Other traits                                          | Heavy robbing | Short tongue, nice white cappings | Low robbing, good comb<br>builders | Supersedure queens produce defensive colonies | 2 Long tongue | Brood rearing affected by flow, queen cells always present |
| * AFB = America foulbrood ** EFB = European foulbrood |               |                                   |                                    |                                               |               |                                                            |

#### When to catch a swarm:

When should a beekeeper first think about swarms?

Does it matter when the swarm catcher intervenes during the swarming process?

Is it better to catch a cluster before the scout bees have selected a new site?



### Where do honey bees swarm?

**Everywhere there are bees.** 



#### Timeline for Multiple reproductive fission events



Figure 1. Timeline of the important events during reproductive fission ("swarming") of a European honey bee colony. The dates of events are typical for a colony in Ithaca, New York (42°26' N, 76°30' W), a

temperate climate.

capping is a trigger point; colony will swarm

© INRA/DIB-AGIB/ EDP Sciences, 2005 DOI: 10.1051/apido:2005033

Original article

Three mechanisms of queen elimination in swarming honey bee colonies<sup>1</sup>

David C. GILLEY\*, David R. TARPY

Department of Neurobiology and Behavior, Cornell University, Ithaca, NY 14853, USA

# If everything were perfect in the life of a honey bee this would not happen.

